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Introduction

In recent years semiconductor quantum dots (QDs) have been attracting much attention
due to their promising advantages in optoelectronic device applications. Investigation
of different mechanisms leading to homogeneous broadening of optical spectral lines in
QDs, stimulated by experimental studies [ ], is therefore of utmost importance. Various
theoretical treatments applicable to this problem were developed more than 30 years ago
for multi-phonon-assisted optical transitions of electrons localized on lattice defects (for a
review see [ '] and Refs. therein). In the adiabatic approximation the crystal nuclear system
is treated as the slowest one. The relatively fast motion of the electron localized on a lattice
defect or exciton localized in a QD is perturbed by the electron-phonon interaction which
is supposed to be linear in the nuclear displacement. The perturbed energy of the localized
electron (exciton) serves as an adiabatic potential for the nuclear system. The perturbation
is usually considered up to the second order. As a result, parabolic adiabatic potentials
for the nuclear motion corresponding to the crystal ground state and to a state, where the
localized electron or exciton is excited, differ. The first-order perturbation term leads to a
difference in the parabolic potentials minima positions while the second-order term leads to
a difference in their frequencies. As a result, the phonon wave functions of the ground and
the excited states are no longer orthogonal and multi-phonon-assisted transitions become
possible.

In case of optical phonons possessing relatively high frequency several spectral lines
corresponding to phonon-assisted transitions are usually experimentally resolved. In what
follows we will be interested in the zero optical phonon line (ZOPL) broadening. As it
was pointed out by Krivoglaz [ ], the first-order perturbation term can not lead to the zero-
phonon line broadening unless the phonon damping is taken into account. At the same
time, the second-order term does lead to the finite zero-phonon line width [ ].

On the other hand, due to a strong interaction of electrons with acoustic phonons ina QD,
the latter should contribute substantially to the ZOPL width [+, ©]. Since the frequencies
of acoustic phonons are much less than that of optical ones, the ZOPL broadening may
be caused by multiple acoustic phonon assisted transitions governed by the first order
perturbation term.

The aim of this work is to calculate the contributions to the ZOPL homogeneous broad-
ening due to both optical and acoustic phonons making the most reasonable assumptions
and to compare them for a one particular QD system. Since the available experimental
data [ '] were obtained for CdSe spherical nanocrystals of the radius R less than the exciton
Bohr radius in a bulk material, we have chosen this system for our study.
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1. Homogeneous broadening due to optical phonons

Let us consider the homogeneous broadening of the ZOPL associated with an optical transi-
tion to the ground (15,15}, 3,2) state of the exciton confined in a spherical CdSe nanocrystal.
In this section we will discuss the broadening governed by the second-order perturbation

term [ ] Bw a7 G, whered; and dg are the phonon creation and annihilation operators,
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s = 15,18y 3,2, the subscript s” enumerates the upper exciton states, the index & enumer-

ates different phonon modes, st;e ( Vﬁ;h> is the matrix element of electron(hole)-phonon
interaction, £ ? is the exciton energy in the state s. Here we will consider the Frohlich polar
electron-phonon interaction and treat optical phonons as in Ref. [+ ]. In this treatment the
quantized polar phonon modes, characterized by the phonon total angular momentum F,
have, generally speaking, a mixed LO-TO character. However, in what follows we will
consider only modes with 7 = 0 which are purely longitudinal. The boundary condition of
the relative sublattice displacement vanishing at the nanocrystal surface is also supposed to
be applicable. Thus, the electrostatic potential induced by the polar optical phonon modes
with the total angular momentum F = 0 is given by ®(x, R) = > _ ¢=(x, R) (&;; 4 &&),
x

where the sum is hold over the phonon modes with F = 0,
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x = r/R, ji(x) isthe spherical Bessel function of the [-th order, £¢ and e are the CdSe static

and high-frequency dielectric constants, respectively, ve =,/ a)i o~ wé R/Br,wro(wro)

is the bulk LO(TO)-phonon frequency, Br. is the LO-phonon dispersion parameter, the
phonon mode frequencies are defined by equation ji(ve) = 0. The lowest exciton state
which mainly contributes to the sum in the right-hand part of Eq. (1) is the state § =
15.28p,3/2. The matrix element of the exciton-phonon interaction between this state and
the exciton ground state is given by

1
N L / dx —2sin® 7x + x° [fg(x)fg(x)+f;(x)ff(x)]}%(x, R), (3)
0

where e is the electron charge, f; (x), f; (x) are dimensionless functions defined in Ref. [ ]
and describing the radial dependence of the hole envelope wave function. If we neglect
phonon damping and omit in the adiabatic phonon Hamiltonians contributions arising from
the first-order perturbation term, then we will find that the cross-section of light absorption
by the QD is proportional to [ ]
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where (2 is the light frequency, i2; is the energy difference of the electron system before
and after the optical transition, 71z = (exp B — DR Be = hwe/T, T is the temperature
in energy units. Thus, for high temperatures 8,y o¢ T while at T —» 0 it vanishes very
rapidly as exp (— B/2). Since the energy of confined exciton E? oc R™2, from Eqgs. (1)~(4)
it follows that 8,,; o< R.

2. Homogeneous broadening due to acoustic phonons

In this section we will discuss the broadening of the ZOPL due to the first order perturbation
term > Ag (&g + &35). In the strong coupling approximation one obtains [+, ']
&
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where Aye = > Aé /Il wg. For high temperatures 8,c o /T while for T — 0 it tends to
&

a constant value.

Here we will treat acoustic phonons as in Ref. [ 7], where it was shown that the spectrum
of the acoustic vibration modes of a semiconductor QD embedded in a glass matrix is
continuous and contains maxima corresponding to the acoustic phonon resonant reflection
from the QD surface. We will again restrict our consideration to the case of 7 = 0
vibrational modes, which in fact play the major role in the ZOPL broadening, and treat the
exciton-phonon interaction in the framework of the deformation potential approximation.
Thus we obtain

o0 ; 4
b ey (el ¥
52 = —/dy y? coth | —- L FX(y), (6)
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where ¢ is the longitudinal sound velocity inside (outside) the QD, piy (pout) 18

the mass density inside (outside) the QD, Y (y) is the function given in an explicit form in
Ref. [ '] and dependent on cl(m) , cl(OuU , Pin» Pout and the transversal sound velocities inside

and outside the QD,

1

oo~ [ o (72w + 58200] + 2acsin wx o
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de, ay are the deformation potential constants defined as in Ref. ['].

3. Results and discussion

The calculated QD size dependencies of 8¢ and 8oy for T = 300K are shown in Fig. 1(a).
For small QD radii the contribution to the ZOPL homogeneous broadening due to acoustic
phonons predominates. As QD radius increases, the role of optical phonons in the ZOPL
broadening increases and their contribution to the ZOPL width can exceed that of acoustic
phonons. For higher temperatures the role of optical phonons becomes more important
while for lower temperatures the ZOPL broadening is mainly governed by acoustic phonons.
The temperature dependence of their contribution is shown in Fig. 1(b) for a 11 A-size
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Fig. 1. (a): Dependencies of 8,y (dotted line) and 8, (solid and dashed lines) on CdSe QD radius
forT = 300K . Solid and dashed lines correspond to the GeO; and SiO; host matrices, respectively.
(b): Temperature dependencies of 8, for a 11 A-size CdSe QD embedded in a GeO; (solid line)
and SiO; (dashed line) matrix.

QD embedded in different glass matrices and is in a good agreement with the ZOPL
homogeneous linewidth temperature dependence obtained from experimental studies [ ].
One can see from Fig. 1(a,b) that the ZOPL homogeneous broadening due to acoustic
phonons is strongly dependent on the elastic properties of the host matrices.
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